PF louvered-fin geometry
The procedure:
CHX_Geom_PF_Louvered_Fin(TypeHX$: S_T, a_L, a_T, th_f, b, D_h, theta, beta, A_Fin\A)
Provides the geometric data associated with a plate finned - louvered-fin type compact heat exchanger surface. These data are from Kays and London (1994).
Inputs:
The only input is the string identifying the geometry TypeHX$
3/8-6.06: 'PF_louvered-fin_38_606'
3/8(a)-6.06: 'PF_louvered-fin_38a_606'
1/2-6.06: 'PF_louvered-fin_12_606'
1/2(a)-6.06: 'PF_louvered-fin_12a_606'
3/8-8.7: 'PF_louvered-fin_38_87'
3/8(a)-8.7: 'PF_louvered-fin_38a_87'
3/16-11.1: 'PF_louvered-fin_316_111'
1/4-11.1: 'PF_louvered-fin_14_111'
1/4(b)-11.1: 'PF_louvered-fin_14b_111'
3/8-11.1: 'PF_louvered-fin_38_111'
3/8(b)-11.1: 'PF_louvered-fin_38b_111'
1/2-11.1: 'PF_louvered-fin_12_111'
3/4-11.1: 'PF_louvered-fin_34_111'
3/4(b)-11.1: 'PF_louvered-fin_34b_111'
Outputs:
S_T = transverse fin spacing (m or ft)
a_L = lateral length of a louver (m or ft)
a_T = transverse distance between adjacent louvers (m or ft)
th_f = thickness of fin material (m or ft)
b = plate gap (m or ft)
D_h = hydraulic diameter defined as 4 x minimum flow area x length/heat transfer area (m or ft)
theta = minimum flow area/frontal area for finned surface side only
beta = heat transfer area/volume (m^2/m^3 or ft^2/ft^3) for finned surface side only
A_fin\A = heat transfer area on fins/heat transfer area for finned surface side only
Example
$UnitSystem SI Mass J K Pa
$VarInfo a_L units=m
$VarInfo a_T units=m
$VarInfo beta units=1/m
$VarInfo D_h units=m
$VarInfo S_T units=m
$VarInfo th_f units=m
TypeHX$= 'PF_louvered-fin_38a_87'
CALL CHX_Geom_PF_Louvered_Fin(TypeHX$: S_T, a_L, a_T, th_f, b, D_h, theta, beta, A_Fin\A)
{Solution:
S_T = 0.00292 [m]
a_L = 0.009525 [m]
a_T = 0.002032 [m]
th_f = 0.000152 [m]
b = 0.00635 [m]
D_h = 0.00365 [m]
theta = 0.9189 [-]
beta = 1007 [m^2/m^3]
A_Fin/A = 0.705}
Related procedures include: