Contents - index

HeatPipe_GrooveWall_CL

Call Heatpipe_GrooveWall_CL(T_e, Q_dot, L_e, L_a, L_c, theta, R_in, Fluid\$, th_ds, th_bar, depth, R_pore, A, N_artery, N_no, Flag: X[1..31], Power[1..31], Temp[1..31], Press[1..31])

The function HeatPipe_GrooveWall_CL calculates the performance of a screen-covered, groove-wall heat pipe using the techniques described by Prenger (1979) and Woloshun and Merrigan (1988).

Inputs:

T_e - temperature of vapor leaving the evaporator [K, C, F, or R]

Q_dot - heat transfer rate carried by the heat pipe [W, kW, or Btu/hr]

L_e - length of evaporator [m or ft]

L_a - length of adiabatic section [m or ft]

L_c - length of condenser [m or ft]

theta - angle of heat pipe [rad or deg], note that positive corresponds to evaporator down

R_in - inner radius of heat pipe [m or ft]

Fluid\$ - fluid ('lithium', 'sodium', 'potassium', 'mercury', or 'water')

th_ds - the thickness of the distribution screen [m or ft]

th_bar - thickness between arteries [m or ft]

depth - depth of an artery [m or ft]

R_pore - effective pore radius for maintaining the pressure difference at the liquid-vapor interface [m or ft]

A - velocity profile correction factor used by HTPIPE [-]

A is defined as u^2/V^2 where u = local velocity and V = average velocity at the evaporator exit

A = 1.234 for laminar flow and A = 2.22 for turbulent flow

N_artery - number of operating arteries [-]

N_no - number of arteries not operating [-]

Flag - flag to set flow condition, set to 0 to ignore

1 = laminar vapor and laminar liquid

2 = turbulent vapor and laminar liquid

3 = laminar vapor and turbulent liquid

4 = turbulent vapor and turbulent liquid

Outputs:

X[1..31] - positions at temperatures, pressures and power are reported [m]

X[1..11] will be in evaporator

X[11..21] will be in adiabatic section

X[21..31] will be in condenser

Q_dot[1..31] - local power transported [W or Btu/hr]

Temp[1..31] - local vapor temperature [K, C, F, or R]

Press[1..31] - local vapor pressure [Pa, kPa, psi, atm]

The units for the inputs to the function are based on the unit setting in EES.

Example:

\$UnitSystem SI Mass J K Pa Radian

\$VarInfo X[] Units='m'

\$VarInfo Q_dot[] Units='W'

\$VarInfo Temp[] Units='K'

\$VarInfo Press[] Units='Pa'

T_e = 775 [K]

Q_dot = 7500 [W]

L_e = 1 [m]

L_a = 1 [m]

L_c = 1 [m]

R_in = 0.0185 [m]

Fluid\$ = 'Potassium'

th_ds = 0.03048 [cm]*Convert(cm,m)

th_bar = 0.03048 [cm]*Convert(cm,m)

depth = 0.125 [cm]*Convert(cm,m)

R_pore = 0.0025 [cm]*Convert(cm,m)

N_artery = 3 [-]

N_no = 0 [-]

A = 1.234 [-]

Flag = 0 [-]

Call Heatpipe_GrooveWall_CL(T_e, Q_dot, L_e, L_a, L_c, theta, R_in, Fluid\$, th_ds, th_bar, depth, R_pore, A, N_artery, N_no, Flag: X[1..31], Power[1..31], Temp[1..31], Press[1..31])