HeatPipe_GrooveWall_Limits_CL
Call Heatpipe_GrooveWall_Limits_CL(T_e, L_e, L_a, L_c, theta, R_in, Fluid$, th_ds, th_bar, depth, R_pore, A, N_artery, N_no, Flag: Q_dot_cap, Q_dot_sonic, Q_dot_entr)
The function HeatPipe_GrooveWall_Limits_CL calculates the limits of performance of a screen-covered, groove-wall heat pipe using the program HTPIPE, translated from FORTRAN to Delphi.
Inputs:
T_e - temperature of vapor leaving the evaporator [K, C, F, or R]
L_e - length of evaporator [m or ft]
L_a - length of adiabatic section [m or ft]
L_c - length of condenser [m or ft]
theta - angle of heat pipe [rad or deg], note that positive corresponds to evaporator down
R_in - inner radius of heat pipe [m or ft]
Fluid$ - fluid ('lithium', 'sodium', 'potassium', 'mercury', or 'water')
th_ds - the thickness of the distribution screen [m or ft]
th_bar - thickness between arteries [m or ft]
depth - depth of an artery [m or ft]
R_pore - effective pore radius for maintaining the pressure difference at the liquid-vapor interface [m or ft]
A - velocity profile correction factor used by HTPIPE [-]
A is defined as u^2/V^2 where u = local velocity and V = average velocity at the evaporator exit
A = 1.234 for laminar flow and A = 2.22 for turbulent flow
N_artery - number of operating arteries [-]
N_no - number of arteries not operating [-]
Flag - flag to set flow condition, set to 0 to ignore
1 = laminar vapor and laminar liquid
2 = turbulent vapor and laminar liquid
3 = laminar vapor and turbulent liquid
4 = turbulent vapor and turbulent liquid
Outputs:
Q_dot_cap - capillary limit [W or Btu/hr]
Q_dot_sonic - sonic limit [W or Btu/hr]
Q_dot_entr - entrainment limit [W or Btu/hr]
The units for the inputs to the function are based on the unit setting in EES.
Example:
$Load Component Library
$UnitSystem SI Mass J K Pa Radian
$VarInfo Q_dot_sonic Units = 'W'
$VarInfo Q_dot_entr Units = 'W'
$VarInfo Q_dot_cap Units = 'W'
T_e = 775 [K]
L_e = 1 [m]
L_a = 1 [m]
L_c = 1 [m]
theta = 0.5 [rad]
R_in = 0.0185 [m]
Fluid$ = 'Potassium'
th_ds = 0.03048 [cm]*Convert(cm,m)
th_bar = 0.03048 [cm]*Convert(cm,m)
depth = 0.125 [cm]*Convert(cm,m)
R_pore = 0.0025 [cm]*Convert(cm,m)
N_artery = 3 [-]
N_no = 0 [-]
A = 1.234 [-]
Flag = 0 [-]
Call Heatpipe_GrooveWall_Limits_CL(T_e, L_e, L_a, L_c, theta, R_in, Fluid$, th_ds, th_bar, depth, R_pore, A, N_artery, N_no, Flag: Q_dot_cap, Q_dot_sonic, Q_dot_entr)
{Solution:
Q_dot_cap = 26628 [W]
Q_dot_sonic = 14415 [W]
Q_dot_entr = 27832 [W]
}