Finned circular tubes geometry
The procedure:
CHX_geom_finned_circular_tube(TypeHX$: D_tube, D_fin, S_T, S_L, fin_pitch, fin_thk, D_h, sigma, alpha, A_fin\A)
Provides the geometric data associated with a finned circular tube compact heat exchanger surface. These data are from Kays and London (1994).
Inputs:
The only input is the string identifying the geometry TypeHX$
CF-7.34 : 'fc_tubes_scf-734'
CF-8.72 : 'fc_tubes_scf-872'
CF-8.72(c) : 'fc_tubes_scf-872c'
CF-7.0-5/8j : 'fc_tubes_scf-70-58j'
CF-8.7-5/8j(a) : 'fc_tubes_scf-87-58ja'
CF-8.7-5/8j(b) : 'fc_tubes_scf-87-58jb'
CF-9.05-3/4j(a) : 'fc_tubes_scf-905-34ja'
CF-9.05-3/4j(b) : 'fc_tubes_scf-905-34jb'
CF-9.05-3/4j(c) : 'fc_tubes_scf-905-34jc'
CF-9.05-3/4j(d) : 'fc_tubes_scf-905-34jd'
CF-9.05-3/4j(e) : 'fc_tubes_scf-905-34je'
CF-8.8-1.0j(a) : 'fc_tubes_scf-88-10ja'
CF-8.8-1.0j(b) : 'fc_tubes_scf-88-10jb'
Outputs:
D_tube = tube outer diameter (m or ft)
D_fin = fin outer diameter (m or ft)
S_T = transverse tube spacing (m or ft)
S_L = longitudinal tube spacing (m or ft)
fin_pitch = # fins per length (fins/m or fins/ft)
fin_thk = fin thickness (m or ft)
D_h = hydraulic diameter defined as 4 x minimum flow area x length/heat transfer area (m or ft)
sigma = minimum flow area/frontal area
alpha = heat transfer area/volume (m^2/m^3 or ft^2/ft^3)
A_fin\A = heat transfer area on fins/heat transfer area
Example
$UnitSystem SI Mass j K Pa
TypeHX$='fc_tubes_scf-88-10ja'
Call chx_geom_finned_circular_tube(TypeHX$: D_tube, D_fin, S_T, S_L, fin_pitch, fin_thk, D_h, sigma, alpha, A_fin\A)
{Solution is:
D_tube = 0.026 [m]
D_fin = 0.0441 [m]
S_T = 0.0498 [m]
S_L = 0.0524 [m]
fin_pitch = 346.5 [1/m]
fin_thk = 0.00031 [m]
D_h = 0.00598 [m]
sigma = 0.439
alpha = 299 [m^2/m^3]
A_fin\A = 0.825}
Related procedures include: