Contents - Index


TrianglesPacking

 

 

The function 

 

TrianglesPacking(Fluid$, m_dot, ht, th, beta, A_fr, L, T_i, T_o, P: h, DELTAp, A_s, DELTAp_c, alpha, phi, sigma, f, j_H)

 

returns the fluid side behavior of a matrix comprised of triangular passages. 

 

Inputs:

Fluid$ - string variable indicating a specific fluid in EES database or in the Solid-Liquid_Props fluids list

m_dot - mass flow rate of the fluid [kg/s] or [lbm/min]

ht = height of a passage [m] or [ft]

th = thickness of passage wall [m] or [ft]

beta = angle of passage [Radian] or [degree]

A_fr - the frontal area of the matrix exposed to the flow [m^2] or [ft^2]

L - length of the triangular passages [m], or [ft]

T_i - inlet temperature of the fluid [C], [K], [F], or [R]

T_o - inlet temperature of the fluid [C], [K], [F], or [R]

P - ambient pressure [Pa], [kPa], [bar], [MPa], [atm], or [psia]

 

Outputs:

h - heat transfer coefficient [W/m^2-K] or [Btu/hr-ft^2-R]

DELTAp - total pressure drop  [Pa], [kPa], [bar], [MPa], [atm], or [psia]

A_s - surface area [m^2] or [ft^2]

DELTAp_c - core only pressure drop  [Pa], [kPa], [bar], [MPa], [atm], or [psia]

alpha = surface area per volume [m^2/m^3] or [ft^2/ft^3]

phi = porosity [-]

sigma = ratio of channel to frontal flow area [-]

f - friction factor [-]

j_H - Stanton j-factor [-]

 

 

Notes: 

This function determines the fluid properties at the stated pressure and temperature, and the Reynolds number from the hydraulic diameter. Then the non-dimensional function Triangular_Channel_ND is called to determine the values for the Colburn j and friction factor. The Colburn j factor is interpreted and returned as a heat transfer coefficient. Data from Kays and London are used. 

 

The core pressure drop includes only frictional effect.  The total pressure drop also includes entrance and exit losses and fluid acceleration.

 

Example:

$UnitSystem SI Mass J K Pa Radian

$VarInfo alpha units=m^2/m^3

$VarInfo A_s units=m^2

$VarInfo DELTAp units=Pa

$VarInfo DELTAp_c units=Pa

$VarInfo h units=W/m^2-K

Fluid$='air'

m_dot=0.1 [kg/s]

A_fr=0.01 [m^2]

L=0.01 [m]

T_i=300 [K]

T_o=320 [K]

P=1e6 [Pa]

ht=0.001 [m]

beta=pi/3 

th=0.0002 [m]

Call trianglespacking(Fluid$, m_dot, ht, th, beta, A_fr, L, T_i, T_o, P: h, DELTAp, A_s, DELTAp_c, alpha, phi, sigma, f, j_H)

 

{Solution:

h = 112.5 [W/m^2-K]

DELTAp = 21.22 [Pa]

A_s = 0.4167 [m^2]

DELTAp_c = 15.49 [Pa]

alpha = 4167 [m^2/m^3]

phi = 0.6944 [-]

sigma = 0.6944 [-]

f = 0.02798 [-]

j_H = 0.006276 [-]

}

 

 

Regenerator Packing Index