Contents - Index


IdealGasTransportProps

The calling protocol is

Call IdealGasTransportProps(F$,T,P,f[1..N]: mu, k, Pr)

Inputs:
F$ a string constant or string variable that contains the names of 1 or more (up to 20) names of ideal gases that are contained in the EES property library.  The names of the gases are separated with a + sign, e.g., 'CH4+C3H8'
T the temperature in the units EES is configured to work in.
P the pressure in the units EES is configured to work in.  (Pressure is used only for calculation of specific entropy)
y[1..N] the mass or mole fractions of the gases represented by string F$.  The sum of the values of y must add to 1.0.  Supply mass fractions if EES is configured to work with specific properties on a mass basis.  Otherwise, supply mole fractions. 

Outputs:
mu The viscosity of the gas mixture determined using the Wilke Approximation as described in Eq. 9-5.2 of Reid, Prausnitz, and Sherwood.
k The thermal conductivity of the gas mixture determined using the Mason and Saxena modification, as described in Eq. 10-6.2. of Reid, Prausnitz, and Sherwood.
Pr The Prandtl number for the gas mixture.

Example:
$UnitSystem SI Mass J K Pa
$VarInfo T Units = 'K'
$VarInfo P Units = 'Pa'
$VarInfo mu Units = 'Pa-s'
$VarInfo k Units = 'W/m-K'
$VarInfo Pr Units = '-'

N = 3 
F$ = 'N2+O2+CO2'
T = 400 [K]
P = 100000 [Pa]
f[1] = 0.2
f[2] = 0.4
f[3] = 0.4

CALL IdealGasMixtureTransportProps(F$,T,P,f[1..N]: mu, k, Pr)

{Solution:
mu = 0.00002258 [Pa-s]
k = 0.0305 [W/m-K]
Pr = 0.7148}

Return to Index