Contents - Index


MOI_Ibeam_ns

 

 

This procedure returns properties of an I-beam that is not symmetric in terms of the upper and lower flanges.

 

Inputs

h = height [m, ft]

b_1 = width of bottom flange [m, ft]

b_2 = width of top flange [m, ft]

w_1 = height of bottom flange [m, ft]

w_2 = height of top flange [m, ft]

t = thickness of web [m, ft]

 

Outputs

A = area [m^2, ft^2]

I = moment of inertia [m^4, ft^4]

Z = section modulus [m^3, ft^3]

rho = radius of gyration [m, ft]

y_bar = distance from bottom of beam to neutral axis [m, ft]

 

Example:   

$Load Mechanical Design

$UnitSystem SI K Pa

$VarInfo A units=m^2

$VarInfo I units=m^4

$VarInfo rho units=m

$VarInfo y_bar units=m

$VarINfo Z units=m^3

b_2 = 0.08 [m]

b_1 = 0.04 [m]

h = 0.1 [m]

w_2 =0.02 [m]

w_1 = 0.03 [m]

t = 0.015 [m]

Call moi_ibeam_ns(h, b_1, b_2 , w_1, w_2 ,t: A, I, Z, rho, y_bar)

 

{Solution:

A = 0.00355 m^2

I = 4.162e-6 m^4

Z = 7.269e-5 m^3

rho = 0.03424 m

y_bar = 0.05725 m

}

 

Reference: Marks' Standard Handbook for Mechanical Engineers, 10th Edition, Avallone, E. A. and T. Baumeister III, eds., McGraw Hill, (1996).

 

Moment of Inertia Index