Contents - Index


Cylinder

 

 

This procedure returns mass and moments of inertia of a cylinder.

 

Inputs

d = diameter of cylinder [m, ft]

L = length of cylinder [m, ft]

rho = material density [kg/m^3, lbm/ft^3]

 

Outputs

m=mass [kg, lb_m]

I_x = moment of inertia about the x-axis [kg-m^2 or lbm-ft^2]

I_y= moment of inertia about the y-axis [kg-m^2 or lbm-ft^2]

I_z = moment of inertia about the z-axis [kg-m^2 or lbm-ft^2]

 

Example:  

$Load Mechanical Design

$UnitSystem SI K Pa 

$VarInfo I_x units=kg-m^2

$VarInfo I_y units=kg-m^2

$VarInfo I_z units=kg-m^2

d=0.1 [m]

L=0.4 [m]

rho=990 [kg/m^3]

Call moi_cylinder(d, L, rho:m, I_x, I_y, I_z)

 

{Solution:

I_x=0.003888 [kg-m^2]

I_y=0.04341 [kg-m^2]

I_z=0.04341 [kg-m^2]

}

 

 

Reference:  Juvinall and Marshek, 5th edition, Fundamentals of Machine Component Design, Appendix B-2

 

 

Moment of Inertia Index