Contents - Index


Hollow Cylinder

 

 

This procedure returns mass and moments of inertia of a cylinder.

 

Inputs

d_i =inner diameter of cylinder [m, ft]

d_o=outer diameter of cylinder [m, ft]

L = length of cylinder [m, ft]

rho = material density [kg/m^3, lbm/ft^3]

 

Outputs

m=mass [kg, lb_m]

I_x = moment of inertia about the x-axis [kg-m^2 or lbm-ft^2]

I_y= moment of inertia about the y-axis [kg-m^2 or lbm-ft^2]

I_z = moment of inertia about the z-axis [kg-m^2 or lbm-ft^2]

 

Example:   

$Load Mechanical

$UnitSystem SI K Pa 

$VarInfo I_x units=kg-m^2

$VarInfo I_y units=kg-m^2

$VarInfo I_z units=kg-m^2

d_i=0.1

d_o=0.12

L=0.4

rho=999 [kg/m^3]

Call moi_hollowcylinder(d_i, d_o, L, rho:m, I_x, I_y, I_z)

 

{Solution:

I_x=0.004212 [kg-m^2]

I_y=0.02052 [kg-m^2]

I_z=0.02052 [kg-m^2]

m = 1.381 [kg]

}

 

 

Reference:  Juvinall and Marshek, 5th edition, Fundamentals of Machine Component Design, Appendix B-2

 

Moment of Inertia Index