Contents - Index


MOI_RightTetrahedron

 

 

This procedure returns mass and moments of inertia of a right tetrahedron.

Inputs

a = length of base in x-direction [m, ft]

b = length of base in y-direction [m, ft]

c = length of base in z-direction [m, ft]

rho = material density [kg/m^3, lbm/ft^3]

 

Outputs

m=mass [kg, lb_m]

I_x = moment of inertia about the x-axis [kg-m^2 or lbm-ft^2]

I_y= moment of inertia about the y-axis [kg-m^2 or lbm-ft^2]

I_z = moment of inertia about the z-axis [kg-m^2 or lbm-ft^2]

x_bar = distance from centroid to flat surface perpendicular to x-axis [m or ft]

y_bar = distance from centroid to flat surface perpendicular to y-axis [m or ft]

z_bar = distance from centroid to flat surface perpendicular to z-axis [m or ft]

 

Example:  

$Load Mechanical Design

$UnitSystem SI K Pa 

$VarInfo I_x units=kg-m^2

$VarInfo I_y units=kg-m^2

$VarInfo I_z units=kg-m^2

a = 0.25 [m]

b = 0.7 [m]

c = 0.4 [m]

rho=990 [kg/m^3]

 

Call moi_righttetrahedron(a, b, c, rho: m, I_x, I_y, I_z, x_bar, y_bar, z_bar)

 

 

{Solution:

m = 11.55 [kg]

I_x= 0.2815 [kg-m^2]

I_y= 0.09637 [kg-m^2]

I_z = 0.2393 [kg-m^2]

x_bar = 0.0625 [m]

y_bar = 0.175 [m]

z_bar = 0.1 [m]

}

 

 

Reference:  Gray, G.L, F. Costanzo, R.J. Witt, and M.E. Plesha, Engineering Mechanics: Statics and Dynamics, Third Edition, McGraw Hill, (2023).

 

Moment of Inertia Index