
Moment of a Force and Equivalent Force Systems

4.1E One Dimensional Optimization in EES
To this point we have talked about using EES to solve problems that involve fixed inputs and result
in a single solution. In Section 3.1E, the use of Parametric Tables was presented as a method for
carrying out a parametric study where we could vary the value of an independent variable to see
its effect on one or more dependent variables. Optimization is the process where one or more
variables are adjusted in order to minimize or maximize an objective function. In engineering, the
objective function can be the cost, weight, efficiency, or some other important characteristic of a
system or component. Optimization is often the reason why engineers develop a model of a
physical system as it allows the identification of an optimal design or operating condition. This
section discusses the powerful algorithms that are available in EES for accomplishing single-
variable optimization.

The first step in an optimization process is to develop a model of the component, system, or process
to be optimized. The model will include some inputs and predict some outputs, one of which is
the objective function. To illustrate the process, consider the objective function

 () ()2sin 2 cos 10 ,f x x = + − °  (4.1)

which can easily be entered in EES.

$UnitSystem degree
f = Sin(x)*(2+Cos(x-10 [degree])^2)

We are interested in finding the maximum value of f within the range 0° < x < 180°. This can be
done manually by generating a parametric table that includes the variables x and f and making a
plot, as described in Section 3.1E and shown in Figure 4.1. Examination of Figure 4.1 shows that
f is maximized at approximately x = 70°.

https://youtu.be/TfLkm-zsbrs

Figure 4.1. The objective function f as a function of x from 0° < x < 180°.

Degrees of Freedom
The optimal value of x can be determined using the built-in optimization algorithms in EES. In
order to carry out optimization, EES requires at least one free parameter that can be varied. If the
value of x were set in the Equations Window

$UnitSystem degree
x=20 [degree]
f = Sin(x)*(2+Cos(x-10 [degree])^2)

then the problem is completely specified. Therefore, if you select Min/Max from the Calculate
menu to initiate the optimization, the message shown in Figure 4.2 will be displayed.

Figure 4.2. Message indicating that the number of degrees of freedom is zero.

It is necessary to comment out the equations that specify value(s) of the independent variables that
will be adjusted to proceed with the optimization. In this case, the equation that specifies x is
commented out.

$UnitSystem degree
{x=20 [degree]}
f = Sin(x)*(2+Cos(x-10 [degree])^2)

This leads to a problem that has one degree of freedom (i.e., there is one more unknown variable
than there are equations) and therefore one-dimensional optimization is possible.

Find Minimum or Maximum Dialog
In order to use EES’ optimization algorithms, select Min/Max from the Calculate menu to access
the Find Minimum or Maximum dialog shown in Figure 4.3.

Figure 4.3. Find Minimum or Maximum Dialog.

The top left portion of the dialog requires that you select the optimization target (i.e., the objective
function) from the list of variables and specify whether the optimization target is to be minimized
or maximized. In this case we will maximize the value of the variable f, as shown. The top right
window allows you to select the independent (i.e., the optimization) variable(s). EES determines
the number of free parameters associated with the equations and requires that this number of
independent parameters be selected. For this problem (with the variable x commented out) there
is only one free parameter.

293BStopping Criteria
The Controls box in the Find Minimum or Maximum dialog shown in Figure 4.3 allows the
termination criteria for the optimization process to be specified. The process will terminate when
either the maximum number of calculations is reached or the relative convergence tolerance is
achieved. The relative convergence tolerance refers to the change in the optimization target that
occurs between successive iterations normalized by its value. If the Stop if error occurs box is
unchecked then EES will not terminate the optimization process if it attempts to solve the equations
for a value of the optimization variable that results in an error. Rather, it will consider this value
of the independent variable to be non-viable (and therefore not optimal) and move on to other
values.

294BGuess Value and Bounds
EES requires that you set both upper and lower bounds and the guess value for each of the
independent variables. To set these bounds, select Bounds from the Find Minimum or Maximum
dialog which will bring up the Variable Information window showing the independent variable(s).
For this problem, there is only one independent variable, x, and so the dialog appears as shown in
Figure 4.4. For this problem we are interested in identifying the maximum value of f that occurs
in the range 0° < x < 180° which sets the bounds. The guess value is set to an arbitrary number
within this range.

Figure 4.4. Variable Information Window for independent variable where guess values and bounds are entered for
the optimization.

Select OK in order to return to the Find Minimum or Maximum dialog. All that remains is to
select the optimization method. In this problem there is only one free parameter, therefore a one-
dimensional optimization will be accomplished using either of the two methods shown: Golden
Section search or Quadratic approximations. The details of the implementation of the optimization
techniques are programmed in EES. However, it is useful to have a high-level understanding of
how the techniques work so that you can select the appropriate one for your problem.

295BThe Golden Section Search
The Golden Section search operates by successively narrowing the range in which the extremum
(minimum or maximum value) is known to exist. The process starts by evaluating the objective
function (in this case f) at the lower and upper limits of the independent variable (i.e., at x = 0° and
x = 180°). The objective function is found to be near zero at these two points, which are labeled
points 1 and 2 in Figure 4.5.

Next, two test points are located within the range. The first test point, identified as point 3 in
Figure 4.5, is located a distance of g (x2 – x1) from the left edge of the range, where g is the Golden
Ratio equal to 0.6182. The range of x is initially from 0° to 180° and therefore point 3 is located
at x3 = 111.3°. The second test point is located at a value of x that is g (x2 - x1) from the right edge
of the range, which corresponds to x4 = 68.7°. The objective function (f) is evaluated at points 3
and 4 and it can be seen that point 4 exhibits a larger value of f than point 3. The result is that the
range of x containing the maximum value of f can be narrowed by eliminating all points to the
right of point 3. The process is repeated by locating two points within the reduced range between
point 1 and point 3. However, point 4 is already located a distance of g (x3 - x1) from the left edge
of the new range. This, in fact, is how the value of g was determined. Therefore, it is not necessary
to reevaluate f at this point. Point 5 is located a distance of g (x3 - x1) from the right edge of the
new range (x5 = 42.5°) and the value of f is evaluated at this point. Since f is higher at point 4 then
at point 5, all values to the left of point 5 are eliminated and the reduced range is now between
points 3 and 5. This process continues until the stopping criteria selected for the optimization is
achieved.

Figure 4.5. Progression of the Golden Section search method for the example optimization problem.

Select the Golden Section search and then hit OK to initiate the optimization. The result is shown
in Figure 4.6. The optimal value of x has been identified to be 68.6° resulting in an objective
function value of f = 2.115. The optimization required 25 iterations to find this result.

Figure 4.6. Result of the Golden Section search indicates the optimized value of the independent variable and the
associated value(s) of the dependent variable as well as the number of iterations required.

296BThe Quadratic Approximations Optimization Method
An alternative method for one-dimensional optimization is Quadratic Approximations. Quadratic
Approximations proceeds three points at a time. For the first iteration, these three points
correspond to the bounds of the problem (points 1 and 2 in Figure 4.7) and one point within the
range (which is the guess value that was set, point 3).

Figure 4.7. Progression of the Quadratic Approximations optimization method.

The quadratic approximation technique assumes that the objective function (f) depends on the
optimization variable (x) in a quadratic manner

 2 .f a x b x c= + + (4.2)

The coefficients a, b, and c in Eq. (4.2) are selected in order to fit the three points. The resulting
quadratic function that passes through points 1, 2, and 3 is shown as quadratic 1 in Figure 4.7. The
optimal value of the optimization variable is predicted using the quadratic equation by setting the
derivative to zero. Taking the derivative of Eq. (4.2) provides

 2 0opta x b+ = (4.3)

which can be solved for xopt:

 .
2opt
bx
a

= − (4.4)

The value of the objective function at xopt is computed, leading to point 4 in Figure 4.7. The point
with the smallest value of the objective function (for maximization) is discarded and the process
is carried out again using the remaining three points (in this case points 1, 3, and 4). The new
quadratic equation is labeled quadratic 2 in Figure 4.7 and leads to the identification of a new
optimal point 5. This process continues until the stopping criteria set for the optimization is
achieved.

For most functions, the Quadratic Approximations method will converge to the optimal solution
more quickly than the Golden Section method. If Quadratic Approximations is selected from the
Find Minimum or Maximum Dialog then the result is shown in Figure 4.8. Notice that the same
result as the Golden Section search (shown in Figure 4.6) was achieved, but the process required
18 iterations and about 0.5 s of compilation/calculation time, compared to 25 iterations and almost
7 s for the Golden Section method.

Figure 4.8. Result of the Quadratic Approximations search indicates the optimized value of the independent variable
and the associated value(s) of the dependent variable and shows that fewer iterations were required compared to the
Golden Section Search.

EXAMPLE E4.1 Maximizing the Moment of a Force

We will revisit Example 4.4 from the text. The belt tensioner ABC is attached to an engine using
a bearing at A having a torsional spring.

Figure 1. Problem from Example 4.4 in Gray et al. (2023).

To release the tension, a ratchet wrench CD is applied to the tensioner at point C. If a moment
about point A of 50 N-m is required to release the belt tension, determine the smallest force F
required and the angle α at which the wrench should be positioned. Consider the following two
cases:
(a) The force F is always perpendicular to the handle of the wrench.

(b) The force F is always horizontal (parallel to the x axis).

SOLUTION

Road Map The textbook solves Example 4.4 using a scalar approach. Here we will use a vector
approach. Also, the textbook solution graphically determines the wrench angle that would
maximize the moment whereas we will set the problem up as an optimization problem. That is,
we will setup the model using a reasonable value of α and then employ the 1-D optimization
algorithms in EES to determine the value of α that maximizes the moment.

 Part (a)
Governing Equations The position vector ACr is a two-dimensional vector corresponding to the
tensioner that is defined by its angle, θ = 30° (defined relative to the x-axis) and length, Lt = 250
mm. The position vector CDr corresponds to the wrench and is defined by its angle, α (defined
relative to the y-axis), and length Lw = 300 mm. The position vector ADr goes from the bearing (at
A) to the point where the force is applied to the wrench (at D)

 .AD AC CDr r r= +

   (1)

https://youtu.be/Jm_SPQm-hw4

The direction of the force vector, F


, is perpendicular to the wrench and therefore is defined by
the angle α. The moment that the force vector applies about the bearing is in the z-direction and
can be obtained from:

 .ADM r F= ×

 

 (2)

The magnitude of the force vector must be such that the moment is the required 50 N-m in the
clockwise direction (i.e., -50 N-m).

Computation Because we will be using trigonometric functions, the $UnitSystem directive is used
to specify that the units of angles must be degree. The inputs include the tensioner angle and
length as well as the wrench angle and length.

$UnitSystem degree

theta = 30 [deg] "angle of the tensioner (from horizontal)"
L_t = 250 [mm]*Convert(mm,m) "length of the tensioner"
L_w = 300 [mm]*Convert(mm,m) "length of the wrench"
alpha = 20 [deg] "angle of the wrench (from vertical)"

The position vectors ACr , CDr , and ADr are declared, The position vectors ACr and CDr are assigned
using the VectorAssignPolar command with the appropriate length and angle while the position
vector ADr is defined using Eq. (1).

$Vector2D r_AC, r_CD, r_AD
r_AC = VectorAssignPolar(L_t,theta) "position vector for tensioner"
r_CD = VectorAssignPolar(L_w,90 [deg] + alpha) "position vector for wrench"
r_AD = r_AC + r_CD "position vector from bearing to end of wrench"

The force vector F



 is defined using the VectorAssignPolar command and the moment is
determined from Eq. (2) with the VectorCross command. Because both ADr and F



are 2-D vectors
the result of the VectorCross command is a scalar that is the magnitude of the moment. The
moment must be set to the required value of -50 N-m, which completes the equation set.

$Vector2D F
F = VectorAssignPolar(magF, alpha) "force"
M = VectorCross(r_AD,F) "moment"
M = -50 [N-m] "required moment"

The equation set can be checked by solving the system of equations which leads to F = 145.6 N
for α = 20°.

The question asks for the value of α that minimizes F which can be determined using EES’ 1-D
optimization algorithm. First, we will comment out the specified value of α.

{alpha = 20 [deg] "angle of the wrench (from vertical)"}

Select Min/Max from the Calculate menu to access the Find Minimum or Maximum Dialog, shown
in Figure 2. The objective function is the magnitude of the force, magF, and the independent
parameter is the angle, alpha. The bounds used for the optimization were set to be from -180° < α
< 180°.

Figure 2. Find Minimum or Maximum Dialog setup to minimize the force by varying the wrench angle.

The results of the optimization are shown in Figure 3 and show that the optimal value of α is -60°
which leads to a minimum force of F = 90.91 N; these results match those reported in the textbook
for Example 4.4.

Figure 3. Results of the optimization.

 Part (b)
Governing Equations The governing equations remain the same except that the direction of the
force F



is now aligned with the x-axis.

Computation The equation that defines the force vector is commented out. Instead, the force
vector is defined using the VectorAssign command with the y-component set to zero.

{F = VectorAssignPolar(magF, alpha) "force"}
F = VectorAssign(magF, 0) "force"

The optimization is carried out as before and the result is that the minimum value of F is 117.6 N
which occurs when α = 0°. These results are also consistent with the answer from the textbook.

Discussion & Verification We can double check our answers by creating a plot showing the value
of F as a function of α for the two cases examined in parts (a) and (b). The result is shown in
Figure 4 and is consistent with the answers we obtained through optimization.

Figure 4. Required force as a function of wrench angle for the case where force is perpendicular to the wrench and
horizontal.

EXAMPLE E4.2 Calculating the Moment about a Point

We will revisit Problem 4.24 from the text. Structure OAB is attached to the ground at point O
and supports forces from two cables.

Figure 1. Problem 4.24 in Gray et al. (2023).

https://youtu.be/L2CwBynsKcs

Cable CAD passes through a frictionless ring at point A, and cable DBE passes through a
frictionless ring at point B. If the force in cable CAD is 250 N and the force in cable DBE is 100
N, use a vector approach to determine:

(a) The moment of all cable forces about point A.

(b) The moment of all cable forces about point O.

SOLUTION

Road Map The problem is a relatively simple application of Varignon’s theorem. The results of
the calculations are visualized using a 3-D vector plot created using the $VectorPlot directive
discussed in Section 3.3E.

 Part (a)
Governing Equations The geometry is specified by the points O, A, B, C, D, and E which can be
used to determine the position vectors that define both the direction of the various forces as well
as the location of the force application. The vector forces are determined based on the specified
magnitudes and their directions. Finally, the moment of the force about point A can be calculated
using the cross product of the position vector defining the location of the application of the force
relative to point A and the force.

Computation The inputs include the coordinates of the points as well as the magnitude of the
forces in the cables.

"Coordinates of points"
$Vector A, B, C, D, E, O
O=VectorAssign(0,0,0) [mm]
A = VectorAssign(0,0,80) [mm]
B = VectorAssign(0,0,200) [mm]
C = VectorAssign(0,-60,0) [mm]
D = VectorAssign(150,0,0) [mm]
E = VectorAssign(0,150,0) [mm]

"magnitudes of forces"
magF_CAD = 250 [N]
magF_DEB = 100 [N]

The position vectors that dictate the directions of the forces are BEr , BDr , ADr and ACr .

"position vectors defining force directions"
$Vector r_BE, r_BD, r_AD, r_AC
r_BE = E - B
r_BD = D - B
r_AD = D - A
r_AC = C - A

The force vectors are the product of the magnitude of the force and the unit vector defined by the
appropriate position vector. For example, BEF



 is given by

 .BE
BE DEB

BE

rF F
r

=






 (1)

"forces"
$Vector F_BE, F_BD, F_AD, F_AC
F_BE = magF_DEB*r_BE/VectorMag(r_BE)
F_BD = magF_DEB*r_BD/VectorMag(r_BD)
F_AD = magF_CAD*r_AD/VectorMag(r_AD)
F_AC = magF_CAD*r_AC/VectorMag(r_AC)

The moment about A associated with each force is the cross product of the position vector from A
to the point of application and the force. The forces that are applied at point A (ACF



 and ADF


)
apply no moment because the position vector is zero. Therefore, the moment about A is the sum
of the moments produced by the two forces applied at point B (BEF



 and BDF


)

 ,A AB BE AB BDM r F r F= × + ×

  

  (2)

where

 .ABr B A= −

 (3)

"moment about A"
$Vector r_AB, M_A
r_AB = B - A
M_A = VectorCross(r_AB,F_BE)+VectorCross(r_AB,F_BD)

Solving provides AM



= (-7200, 7200, 0) N-mm.

It is helpful to use a 3-D vector plot to visualize the forces and resulting moment. We will use the
$VectorPlot directive discussed in Section 3.3E for this purpose. The scale of the moment is much
larger than the scale of the position vectors or forces and therefore we will reduce it by a factor of
100 so that the forces, position vectors, and moment can all be placed on the same plot.

$Vector M_A_scaled
M_A_scaled = M_A/100

$VectorPlot Name='Part a' r_AB:A/black F_BE:B/red F_BD:B/red M_A_scaled:A/purple

The resulting 3-D vector plot is shown in Figure 2. Notice that the twisting action produced by
the two forces involved corresponds to the direction of the resulting moment according to the right-
hand rule.

Figure 2. 3-D vector plot showing the position vector corresponding to the portion of the pole AB as well as the two
forces BEF



 and BDF


 and the moment that the produce about point A, AM


.

 Part (b)
Governing Equations The approach remains the same except that the moment is determined
about point O, therefore all four forces applied contribute to the moment.

Computation The equations from part (a) that define the coordinates, position vectors, and forces
are copied into a new tab, labeled part b.

"Coordinates of points"
$Vector A, B, C, D, E, O
O=VectorAssign(0,0,0) [mm]
A = VectorAssign(0,0,80) [mm]
B = VectorAssign(0,0,200) [mm]
C = VectorAssign(0,-60,0) [mm]
D = VectorAssign(150,0,0) [mm]
E = VectorAssign(0,150,0) [mm]

"magnitudes of forces"
magF_CAD = 250 [N]
magF_DEB = 100 [N]

"position vectors defining force directions"
$Vector r_BE, r_BD, r_AD, r_AC
r_BE = E - B
r_BD = D - B
r_AD = D - A
r_AC = C - A

"forces"
$Vector F_BE, F_BD, F_AD, F_AC
F_BE = magF_DEB*r_BE/VectorMag(r_BE)
F_BD = magF_DEB*r_BD/VectorMag(r_BD)
F_AD = magF_CAD*r_AD/VectorMag(r_AD)
F_AC = magF_CAD*r_AC/VectorMag(r_AC)

The moment about point O is given by

 ,O OB BE OB BD OA AD OA ACM r F r F r F r F= × + × + × + ×

    

    (4)

where

 OBr B O= −

 (5)

and

 .OAr A O= −

 (6)

$Vector r_OB, r_OA, M_O
r_OB = B - O
r_OA = A - O
M_O = VectorCross(r_OB, F_BE)+VectorCross(r_OB,F_BD)+VectorCross(r_OA,F_AC)+&
VectorCross(r_OA,F_AD)

The calculations lead to OM



= (0, 29647, 0) N-mm. A 3-D vector plot containing the pole, the
four forces, and the moment (scaled to appear on the plot) is generated using the $VectorPlot
directive below and shown in Figure 3.

$Vector M_O_scaled
M_O_scaled = M_O/100

$VectorPlot Name='Part b' r_OB:O/black F_BE:B/red F_BD:B/red F_AD:A/red F_AC:A/red &
M_O_scaled:O/purple

Figure 4. Required force as a function of wrench angle for the case where force is perpendicular to the wrench and
horizontal.

Notice that the net result of the four forces is to create a moment about point O that causes the pole
to twist about the y-axis.

EXAMPLE E4.3 Moment of a Force About a Line – Vector Solution

We will revisit Example 4.7 from the text. The steering linkage for the front wheel of an off-road
vehicle is shown.

Figure 1. Example 4.7 in Gray et al. (2023).

Force F causes the assembly to rotate about line a so that the vehicle can be steered. Point A is
located at (160, -20, 100) mm. Determine the force F needed to produce a moment about line a
of 10 N-m if

(a) line a lies in the yz plane and has direction angle θz = 10º.

(b) line a coincides with the z axis.

SOLUTION

Road Map We can determine the vector moment produced about any point on a (e.g., point O)
as we did in Example 4.2. The moment about line a is the projection of the resulting vector moment
onto the line.

 Part (a)
Governing Equations The coordinates of point A are given in the problem statement allowing
the position vector OAr to be determined

 .OAr A O= −

 (1)

The direction of the force vector F



is given by the unit vector

()

() () ()2 2 2

ˆˆ ˆ8 12 9
ˆ .

8 12 9
F

i j k
u

− − +
=

− + − +
 (2)

https://youtu.be/1nj_cn33aPQ

The force vector is then

 ˆ ,FF F u=



 (3)

where F is the unknown magnitude of the force. The vector moment produced by force F



about
point O is

 .O OAM r F= ×

 

 (4)

A unit vector in the direction of line a is given by

 () () ˆˆ ˆˆ 0 sin cos .a z zu i j kθ θ= + + (5)

The magnitude of the projection of OM



 onto line a is

 ˆ .a O aM M u= ⋅



 (6)

The value of F must be set such that Ma = 10 N-m.

Computation The inputs include the coordinates of points O and A as well as the unit vectors that
define the direction of the force (ˆFu) and the line a (ˆau).

$UnitSystem degree

$Vector O, A, u_F, u_a
O = VectorAssign(0,0,0) [mm]
A = VectorAssign(160, -20, 100) [mm] "point of force application"
theta_z = 10 [degree] "angle between line a and the z axis in the y-z plane"
u_a = VectorAssign(0, Sin(theta_z), Cos(theta_z)) "unit vector defining the direction of line a"
u_F = VectorAssign(-8,-12,9)/Sqrt(8^2+12^2+9^2) "unit vector defining the direction of the force"

The position vector OAr is computed using Eq. (1).

$Vector r_OA
r_OA = A - O "position vector"

The magnitude of the force vector is not known. One method of moving forward is to enter Eqs.
(3), (4), and (6) along with the specification that Ma must be 10 N-m before solving the equations.
A better approach is to enter a guess for the magnitude of the force and then enter each equation
sequentially, solving as we go to ensure that we have not introduced any errors. Finally, we can
update our guess values, comment out the guessed value of F and require that Ma must be 10 N-
m.

A guess value of F is entered.

magF = 10 [N] "guess value for F"

Equation (3) is used to determine the force vector.

$Vector F
F = magF*u_F "force vector"

Equation (4) is used to determine the moment about point O.

$Vector M_O
M_O = VectorCross(r_OA, F) "moment vector about O"

Equation (5) is used to determine the magnitude of moment OM



 projected onto line a.

magM_A = VectorDot(M_O, u_a) "mag. of M_O on line a"

Solving shows that Ma is equal to -1434 N-mm (-1.434 N-m) for the assumed value of F = 10 N;
clearly a larger force is required to reach a moment of 10 N-m. Also notice that the value of the
moment is negative since a positive force F



 will tend to rotate the mechanism clockwise (i.e., in
the negative direction) about line a. Next we will update our guess values (select Update Guesses
from the Calculate menu), comment out the assumed value of F

{magF = 10 [N] "guess value for F"}

and specify that Ma must be -10 N-m.

magM_A = -10 [N-m]*Convert(N-m,N-mm) "required value of magM_A"

Solving provides F = 69.75 N, which agrees with the answer in the text.

Discussion & Verification It is instructive to visualize these results using a 3-D vector plot. The
vector moment along line a is

 ˆ .a a aM M u=



 (7)

The $VectorPlot directive below will plot the position vector OAr , the force F



, and the two moment

vectors OM


 and aM


 (scaled so that they show up in the plot), as shown in Figure 2.

$Vector M_A
M_A = magM_A*u_a "moment projected onto line a"

$Vector M_A_scaled, M_O_scaled
M_A_scaled = M_A/100
M_O_scaled = M_O/100

$VectorPlot Name = 'Vectors' r_OA:O/black F:A/red M_A_scaled:O/purple M_O_scaled:O/green

Figure 2. Vector plot showing the relevant position vector, force, and moments.

 Part (b)
Governing Equations The approach remains the same except that the unit vector defining line a
is now directed along the z-axis.

Computation The equations from part (a) are all the same – the only change is that the angle θz
must be changed to 0°.

{theta_z = 10 [degree] "angle between line a and the z axis in the y-z plane"}
theta_z = 0 [degree] "angle between line a and the z axis in the y-z plane"

Solving leads to F = 81.73 N, which agrees with the text.

Discussion & Verification The vector plot is automatically refreshed when the equations are
solved due to the $VectorPlot directive; the new vector plot is shown in Figure 3.

Figure 3. Vector plot showing the relevant position vector, force, and moments with θz = 0°.

We could examine the relationship between the force required and the angle of line a. A
Parametric Table containing the variables theta_z and magF is generated and used to develop the
plot shown in Figure 4(a). We can use EES’ internal optimization algorithm to minimize the value
of F by varying θz; the result is shown in Figure 4(b).

 (a) (b)
Figure 4. (a) Magnitude of force required as a function of the rotation angle, θz and (b) results of using EES’ 1-D
optimization to vary the rotation angle in order to minimize the required value of F.

4.2E Multi-dimensional Optimization in EES
Section 4.1E discussed one-dimensional optimization using EES. In this case an objective function
was optimized (minimized or maximized) by varying a single independent variable. Most
engineering designs will involve more than one independent variable and therefore require multi-
dimensional optimization. In this section we will introduce the multi-dimensional optimization
algorithms that are available in EES in the context of the two-dimensional objective function
defined by

2 2 2

1 1 2
2 2 20.7exp 1 0.7exp exp ,

0.2 0.2 0.05
r r rf

      
= − + − − −      

      
 (4.5)

where

 () ()2 2

1 0.5 0.5 , andr x y= − + − (4.6)

 () ()2 2
2 0.2 0.2 .r x y= − + − (4.7)

Note that the multi-dimensional optimization algorithms discussed in this section can be easily
extended to more independent variables, but the techniques are most easily visualized in two-
dimensions. The objective function can be entered in EES, as shown below.

"Objective Function"
r1=Sqrt((x-0.5)^2+(y-0.5)^2)
r2=Sqrt((x-0.2)^2+(y-0.2)^2)
f=0.7*Exp(-r1^2/0.2^2)+(1-0.7*exp(-r1^2/0.2^2))*exp(-r2^2/0.05^2)

In Chapter 5 we will discuss 3-D plots in EES including both contour and surface plots. A contour
plot of the objective function given by Eqs. (4.5) through (4.7) is shown in Figure 4.9(a) and a
surface plot is shown in Figure 4.9(b).

https://youtu.be/jqrU1V-GPA8

 (a) (b)
Figure 4.9: (a) Contour plot and (b) surface plot of the objective function (f) as a function of the two independent
variables x and y.

Because we have not specified either x or y in the EES code there are two degrees of freedom.
Therefore, if we select Min/Max from the Calculate menu we can access the Find Minimum or
Maximum shown in Figure 4.10.

Figure 4.10. Find Minimum or Maximum Dialog.

The optimization problem is set up to maximize the objective function f by adjusting the two
independent variables (x and y). Select the Bounds button to set the bounds and guess values for
the two independent variables, x and y. In this case the parameter space to explore will be from 0
to 1 for both x and y.

Figure 4.11. Bounds and guess values for the independent variables.

There are several methods available for multi-dimensional optimization. Because they have been
programmed in EES it is not necessary to understand the details of their implementation in order
to use them. However, it is useful to have a general idea of how each method works so that you
can select the appropriate method for your problem.

298BThe Conjugate Directions Method
The Conjugate Directions method uses a series of one-dimensional searches to locate the optimum.
In its simplest form, EES will hold all but one of the optimization variables constant and then vary
the single remaining parameter in order to locate the value at which the objective function is
maximized along a one-dimensional path. This process can be accomplished using one of the one-
dimensional optimization techniques discussed in Section E4.1. This process is repeated for each
independent variable multiple times until the stopping criteria are achieved.

As an example, consider Figure 4.12. The process begins at the specified guess values for the
independent variables (x = 0.7 and y = 0.7, labeled point 1) and then progresses by holding x
constant while varying y (i.e., moving along path 1). The optimal value of y is identified along
this path (labeled point 2). Next the value of y is held constant and x is varied (i.e., we move along
path 2), this leads us to point 3. Next the process repeats by holding x constant and varying y (i.e.,
moving along path 3) and continues in this manner. EES employs a method referred to as
conjugate directions in order to improve the efficiency of the optimization. The conjugate
directions method makes the one-dimensional searches along directions that are oriented more
favorably than those defined by any of the independent variables in the problem.

Figure 4.12. Progression of the Conjugate Directions method.

In order to implement the technique, select Conjugate Directions method and then OK. The result
is shown in Figure 4.13. The optimization required 45 iterations (i.e., function evaluations) to
arrive at the optimal value x = 0.5 and y = 0.5 where the objective function is f = 0.7. Notice from
Figure 4.12 that the technique did not identify the global maximum but rather a local maximum;
the true optimal solution corresponds to the smaller but taller peak at x = 0.2 and y = 0.2. The
Conjugate Directions method is sensitive to the guess values for the optimization variables (which
correspond to the starting point of the optimization process). If a guess value that is closer to the
peak is specified (e.g., x = 0.15 and y = 0.15) then the Conjugate Directions method is likely to
converge to the global optimal value of x = 0.2 and y = 0.2 where the objective function is f = 1.

Figure 4.13. Results of using the Conjugate Directions method.

299BThe Variable Metric Method
The Variable Metric method is a multi-dimensional version of the quadratic approximations
method that was discussed for one-dimensional optimization in Section 4.1. The objective
function is fit to a quadratic function of all of the independent variables. The function is used to
locate an estimate of the optimal value, which leads to a new trial point and the process is
continued. The Variable Metric method, like the Conjugate Directions method, is sensitive to the
guess values that are used to start the optimization and may not find a global optimum.

In order to use the Variable Metric Method it is only necessary to select the Variable Metric method
radio button in the Find Minimum or Maximum dialog. The method is slightly more efficient than
the Conjugate Directions Method for this application, requiring only 39 iterations as shown in
Figure 4.14. Note that the Variable Metric Method also failed to identify the global optimum for
this problem.

Figure 4.14. Results of using the Variable Metric method.

The Nelder-Mead Simplex Method
The Professional license of EES provides the Nelder-Mead simplex method of multi-dimensional
optimization. The algorithm uses N+1 test points at a time, where N is the dimension of the
problem (e.g., for our two-dimensional optimization problem the method would use three points).
The test points define a simplex; for this 2-D problem, the simplex is a triangle. The method
proceeds by modifying the simplex during each iteration by adjusting one of its points. The
process continues until the stopping criterion is achieved. The method is illustrated in Figure 4.15
where the simplex associated with iterations 12 through 16 are shown.

Figure 4.15. Progression of the Nelder-Mead Simplex method.

Select the Nelder-Mead Simplex Method in the Find Minimum or Maximum dialog. The result is
shown in Figure 4.16. Notice the method is not as efficient as the others discussed since it requires
62 iterations and also that it failed to find the global optimal solution.

Figure 4.16. Results of using the Nelder-Mead Simplex Method.

The DIRECT Algorithm
The DIRECT Optimization Algorithm implements the original DIRECT algorithm which
subdivides the parameter space into successively smaller regions using a regular grid. Each region
is then sampled and subdivided as necessary. The progression of the algorithm for this problem is
shown in Figure 4.17 where you can see the initial, large region sampled by the algorithm followed
by the successive smaller regions.

Figure 4.17. Progression of the Nelder-Mead Simplex method.

The DIRECT algorithm is sometimes better at finding a global optimal value than the techniques
discussed thus far since it samples the entire parameter space, regardless of the guess value. Figure
4.18 illustrates the result of using the DIRECT Method for this problem. Notice that it was able
to find the global optimal solution at x = 0.2 and y = 0.2 but that it required 310 iterations.

Figure 4.18. Results of using the DIRECT Method.

The Genetic Method
The Professional license of EES includes the Genetic Method which is designed to reliably locate
global optimal values even if the surface has many local peaks. The genetic method mimics the
processes occurring in biological evolution. A population of individuals (i.e., sample points) is
initially chosen at random from the range specified by the bounds of the independent variables.
The individuals in this population are surveyed to determine their fitness (i.e., the values of the
objective function). Then a new generation of individuals is generated in a stochastic manner by
'breeding' selected members of the current population according to their fitness. The

characteristics of an individual that are passed on to the next generation are represented by encoded
values of its independent variables. The probability that an individual in the current population
will be selected for breeding the next generation is an increasing function of its fitness. Additional
random variations are introduced by the possibility of 'mutations' that cause the offspring to have
characteristics that differ markedly from those of the parents. In the implementation programmed
in EES, the number of individuals in the population remains constant for each generation. The
number of individuals, number of generations, and mutation rate can be adjusted by slider bars in
the Find Minimum or Maximum Dialog once the Genetic Method is selected, as shown in Figure
4.19.

Figure 4.19. Find Minimum or Maximum Dialog for the Genetic Method.

Figure 4.20 illustrates the progression of the genetic optimization method; the populations for a
few selected generations are shown. In the first generation, Figure 4.20(a), the members of the
population are uniformly distributed throughout the parameter space (although one member is
located exactly at the coordinates associated with the guess value, x = 0.7 and y = 0.7). The
population slowly converges towards the broad peak, as shown in Figure 4.20(b) for generation 5.
Mutations cause individual members to move away from this broad peak, as shown in Figure
4.20(c) for generation 23. If even one member happens to come near the second, smaller but
steeper peak then the majority of the population will eventually be attracted there. This is shown
in Figure 4.20(d) for generation 77.

 (a) (b)

 (c) (d)
Figure 4.20. Progression of the genetic optimization method: (a) generation 1, (b) generation 5, (c) generation 23,
and (d) generation 77.

The primary advantage of genetic optimization is its ability to reliably find a global optimum even
if there are many local optimal values in the problem. Genetic optimization will inevitably find
the sharp peak given a sufficiently large population and number of generations. The disadvantage
of genetic optimization is that it takes a long time since many of the members of each population
are not useful. Figure 4.21 shows the results of using the Genetic Method. Note that the global
optimal was identified, but that it required 2151 iterations to locate it.

Figure 4.21. Results of using the DIRECT Method.

EXAMPLE E4.4 Determination of an Equivalent Force System

We will revisit Example 4.13 from the text. A table supports the vertical forces shown.

Figure 1. Example 4.13 in Gray et al. (2023).

(a) Determine an equivalent force system at the center of the table, point O.

(b) Determine an equivalent force system consisting of a single force, and specify the x and y
coordinates of the point where the force’s line of action intersects the table.

SOLUTION

Road Map We will use a vector approach for this problem. The equivalent force system for part
(a) is the resultant of the applied forces together with the net moment applied by the forces about
point O. In part (b) the equivalent force system is again the resultant of the applied forces this
resultant force must be applied at a point that leads to the same net moment calculated in part (a).

 Part (a)
Governing Equations The coordinates of the center of the table (O) and the points where each
force is applied (A, B, and C) are all specified. Therefore, the position vectors from the center to
each point of application can be determined

 ,OAr A O= −

 (1)

https://youtu.be/zAw1cReQjV8

 , andOBr B O= −
 (2)

 .OCr C O= −

 (3)

The magnitude of each force and their direction (vertically downwards, or in the ĵ− direction) are
also specified, allowing each force vector (AF



, BF


, and CF


) to be determined. The resultant of
these forces is

 ,R A B CF F F F= + +

   

 (4)

and the net moment that these forces produce about point O is

 .RO OA A OB B OC CM r F r F r F= × + × + ×

   

   (5)

Computation The inputs include the coordinates of the points O, A, B, and C as well as
magnitudes of the applied forces.

$Vector O, A, B, C
O=VectorAssign(0,0,0) [m] "center of table"
A=VectorAssign(0.5, 0.2, 0) [m] "point of application for force A"
B=VectorAssign(0,0.4,0) [m] "point of application of force B"
C=VectorAssign(-0.4,-0.3,0) [m] "point of application of force C"
magF_A = 260 [N] "magnitude of force A"
magF_B = 120 [N] "magnitude of force B"
magF_C = 100 [N] "magnitude of force"

The forces are specified based on their magnitude and direction.

$Vector F_A, F_B, F_C
F_A = -magF_A*VectorUnit_k "force A"
F_B = -magF_B*VectorUnit_k "force B"
F_C = -magF_C*VectorUnit_k "force C"

The position vectors from the center of the table to each force’s point of application are obtained
using Eqs. (1) through (3).

$Vector r_OA, r_OB, r_OC
r_OA = A - O "position vector from center to A"
r_OB = B - O "position vector from center to B"
r_OC = C - O "position vector from center to C"

The force and moment associated with the equivalent force system applied at point O are obtained
using Eqs. (4) and (5).

$Vector F_R, M_RO
F_R = F_A + F_B + F_C "resultant force"
M_RO =VectorCross(r_OA,F_A) + VectorCross(r_OB,F_B)+VectorCross(r_OC,F_C)

 "resultant moment about point O"

Solving leads to RF



= (0, 0, -480) N and ROM


 = (-70, 90, 0) N-m.

Discussion & Verification It is instructive to visualize these results using a 3-D vector plot. The
EES code below converts the coordinates and position vectors from m to mm so that they have
approximately the same scale as the forces involved in the problem and generates a 3-D vector
plot. The result is shown in Figure 2. Notice that the net moment lies entirely in the x-y plane
since all of the applied forces are in the z-direction.

$Vector r_OA_mm, r_OB_mm, r_OC_mm, A_mm, B_mm, C_mm
r_OA_mm = r_OA*Convert(m,mm)
r_OB_mm = r_OB*Convert(m,mm)
r_OC_mm = r_OC*Convert(m,mm)
A_mm = A*Convert(m,mm)
B_mm = B*Convert(m,mm)
C_mm = C*Convert(m,mm)

$VectorPlot Name = 'Part a' r_OA_mm: O/black r_OB_mm: O/black r_OC_mm:O/black F_A:A_mm/red&
F_B:B_mm/red F_C:C_mm/red F_R:O/red M_RO:O/purple

Figure 2. 3-D Vector plot showing applied forces and the equivalent force and moment.

 Part (b)
Governing Equations and Computation We need to find the coordinates of a point D such that
the resultant force, RF



, applied at that point produces the same total moment ROM


. The portion
of the code from part (a) that computes these quantities is copied into a new tab.

$Vector O, A, B, C
O=VectorAssign(0,0,0) [m] "center of table"
A=VectorAssign(0.5, 0.2, 0) [m] "point of application for force A"
B=VectorAssign(0,0.4,0) [m] "point of application of force B"
C=VectorAssign(-0.4,-0.3,0) [m] "point of application of force C"
magF_A = 260 [N] "magnitude of force A"
magF_B = 120 [N] "magnitude of force B"
magF_C = 100 [N] "magnitude of force"

$Vector F_A, F_B, F_C
F_A = -magF_A*VectorUnit_k "force A"
F_B = -magF_B*VectorUnit_k "force B"
F_C = -magF_C*VectorUnit_k "force C"

$Vector r_OA, r_OB, r_OC
r_OA = A - O "position vector from center to A"
r_OB = B - O "position vector from center to B"
r_OC = C - O "position vector from center to C"

$Vector F_R, M_RO
F_R = F_A + F_B + F_C "resultant force"
M_RO =VectorCross(r_OA,F_A) + VectorCross(r_OB,F_B)+VectorCross(r_OC,F_C)
 "resultant moment about point O"

The point D must lie on the table so it’s z-coordinate must be zero (Dz = 0). The x- and y-
components of point D are unknown. Initially we will set them to reasonable values to proceed
with the solution.

$Vector r_OD, D
D_x = 0.3 [m] "assumed - will become an optimization variable"
D_y = 0.2 [m] "assumed - will become an optimization variable"
D_z = 0 [m] "point D lies on the table"
r_OD = D - O "position vector associated with force application"

The moment associated with applying force RF



 at point D is given by

 , .RO calc OD RM r F= ×

 

 (6)

$Vector M_RO_calc
M_RO_calc = VectorCross(r_OD, F_R) "moment from resultant force"

We need to vary the coordinates of D so that the calculated value of the moment, ,RO calcM



, is equal

to the resultant moment, ROM


. The z-component of both ,RO calcM


 and ROM


 will necessarily be
zero, as shown in Figure 2. Therefore, we need only to vary Dx and Dy until

 , , , , andRO calc x RO xM M=

 

 (7)

 , , , .RO calc y RO yM M=

 

 (8)

We can do this in several ways, one possibility is to set this up as a multi-dimensional optimization
problem where the independent variables are Dx and Dy and the objective function is an error
related to the degree to which Eqs. (7) and (8) are satisfied. For example, the total rms error is
given by

 () ()2 2

, , , , , , .RO calc x RO x RO calc y RO yerror M M M M= − + −
   

 (9)

error = Sqrt((M_RO_calc_x-M_RO_x)^2 + (M_RO_calc_y-M_RO_y)^2)

Comment out the two independent variables, Dx and Dy, so that there are two degrees of freedom.

{D_x = 0.3 [m] "assumed - will become an optimization variable"
D_y = 0.2 [m] "assumed - will become an optimization variable"}

Select Min/Max from the Calculate menu and setup the optimization problem to minimize the
value of the variable error by changing the values of the variables D_x and D_y, as shown in Figure
3. Set the bounds and guess values and select OK to run the optimization. The coordinates of
point D found by the optimization are (0.1875, 0.1458, 0) m.

Figure 3. Find Minimum or Maximum Dialog.

The directive below creates the 3-D vector plot shown in Figure 4 which illustrates the three
applied forces as well as their resultant applied at point D so that creates the same moment.

$Vector r_OA_mm, r_OB_mm, r_OC_mm, r_OD_mm, A_mm, B_mm, C_mm, D_mm
r_OA_mm = r_OA*Convert(m,mm)
r_OB_mm = r_OB*Convert(m,mm)
r_OC_mm = r_OC*Convert(m,mm)
r_OD_mm = r_OD*Convert(m,mm)
A_mm = A*Convert(m,mm)
B_mm = B*Convert(m,mm)
C_mm = C*Convert(m,mm)
D_mm = D*Convert(m,mm)

$VectorPlot Name = 'Part b' r_OA_mm: O/black r_OB_mm: O/black r_OC_mm:O/black&
r_OD_mm:O/blue F_A:A_mm/red F_B:B_mm/red F_C:C_mm/red F_R:D_mm/purple

Figure 4. 3-D Vector plot showing applied forces and the resultant placed at point D which creates the same
moment.

	Moment of a Force and Equivalent Force Systems
	4.1E One Dimensional Optimization in EES
	Degrees of Freedom
	Find Minimum or Maximum Dialog
	293BStopping Criteria
	294BGuess Value and Bounds
	295BThe Golden Section Search
	296BThe Quadratic Approximations Optimization Method

	4.2E Multi-dimensional Optimization in EES
	298BThe Conjugate Directions Method
	299BThe Variable Metric Method
	The Nelder-Mead Simplex Method
	The DIRECT Algorithm
	The Genetic Method

