Contents - Index


PF louvered-fin ND functions

 

 

The procedure: 

 

CHX_ND_PF_Louvered_Fin(TypeHX$, Re: f, j_H)

 

provides the dimensionless performance associated with a louvered-fin compact heat exchanger surface.  These data are from Kays and London (1994).

 

Inputs

TypeHX$: string identifying the geometry 

 3/8-6.06:  'PF_louvered-fin_38_606'

 3/8(a)-6.06: 'PF_louvered-fin_38a_606'

  1/2-6.06: 'PF_louvered-fin_12_606'

  1/2(a)-6.06: 'PF_louvered-fin_12a_606'

  3/8-8.7: 'PF_louvered-fin_38_87'

  3/8(a)-8.7: 'PF_louvered-fin_38a_87'

  3/16-11.1: 'PF_louvered-fin_316_111'

   1/4-11.1: 'PF_louvered-fin_14_111'

  1/4(b)-11.1: 'PF_louvered-fin_14b_111'

  3/8-11.1: 'PF_louvered-fin_38_111'

  3/8(b)-11.1: 'PF_louvered-fin_38b_111'

  1/2-11.1: 'PF_louvered-fin_12_111'

  3/4-11.1: 'PF_louvered-fin_34_111'

  3/4(b)-11.1: 'PF_louvered-fin_34b_111'

 

Re: Reynolds number (-)

 

Outputs

f:  friction factor (-)

j_H: Colburn j function for heat transfer (-)

 

The Reynolds number is defined according to:

 

 

where m is the viscosity, Dh is the hydraulic diameter, and G is the mass flux.  The hydraulic diameter is defined as:

 

 

where Ac is the minimum free flow area, A is the total heat transfer area, and L is the length in the flow direction.

 

The mass flux is defined as: 

 

 

where is the mass flow rate.  

 

The friction factor is defined as:

 

 

where r is the density, and to is the equivalent shear stress, defined as:

 

 

where DP is the pressure drop due to friction and form drag in the core.

 

Example

TypeHX$= 'PF_louvered-fin_38_87'

Re=2650

CALL CHX_ND_PF_Louvered_Fin(TypeHX$, Re: f, j_H)

 

{Solution is:

f = 0.03718, j_H = 0.00814}

 

Related procedures include:

Geometry Functions

Coefficient of Heat transfer

Pressure Drop