Contents - Index


PF strip-fin geometry

 

 

 

The procedure: 

 

CHX_geom_pf_strip_fin(TypeHX$: S_T, c, th_f, th_s, b, b_f, D_h, theta, beta, A_fin\A)

 

Provides the geometric data associated with a plate finned - strip-fin type compact heat exchanger surface.  These data are from Kays and London (1994).

 

Inputs:

The only input is the string identifying the geometry TypeHX$

 1/8-15.2:  'PF_strip-fin_18_152'

 1/8-13.95: 'PF_strip-fin_18_1395'

  1/8-15.61: 'PF_strip-fin_18_1561'

  1/8-19.86: 'PF_strip-fin_18_1986'

  1/9-22.68: 'PF_strip-fin_19-2268'

  1/9-25.01: 'PF_strip-fin_19-2501'

  1/9-24.12: 'PF_strip-fin_19_2412'

  1/10-27.03: 'PF_strip-fin_110_2703'

  1/10-19.35: 'PF_strip-fin_110_1935'

  1/10-19.74: 'PF_strip-fin_110_1974'

  3/32-12.22: 'PF_strip-fin_332_1222'

  1/2-11.94(D): 'PF_strip-fin_12_1194D'

  1/4-15.4(D): 'PF_strip-fin_14_154D'

  1/6-12.18(D): 'PF_strip-fin_16_11218D'

  1/7-15.75(D): 'PF_strip-fin_17_1575D'

  1/8-16.00(D): 'PF_strip-fin_18_1600D'

  1/8-16.12(D): 'PF_strip-fin_18_1612D'

  1/8-19.82(D): 'PF_strip-fin_18_1982D'

  1/8-20.06(D): 'PF_strip-fin_18_2006D'

  1/8-16.12(T): 'PF_strip-fin_18_1612T'

 

Outputs:

S_T = transverse fin spacing (m or ft)

c = fin length in flow direction (m or ft)

th_f = thickness of fin material (m or ft)

th_s = thickness of splitter plate material (m or ft) (=0 for fins with no splitter)

b = plate gap (m or ft)

b_f = fin spacing (m or ft) (=b for fins with no splitter)

D_h = hydraulic diameter defined as 4 x minimum flow area x length/heat transfer area (m or ft)

theta = minimum flow area/frontal area for finned surface side only

beta = heat transfer area/volume (m^2/m^3 or ft^2/ft^3) for finned surface side only

A_fin\A = heat transfer area on fins/heat transfer area for finned surface side only

 

Example

$UnitSystem SI Mass J K Pa

TypeHX$= 'PF_strip-fin_18_152'

Call chx_geom_pf_strip_fin(TypeHX$: S_T, a, th_f, th_s, b, b_f, D_h, theta, beta, A_fin\A) 

 

{Solution is:

S_T = 0.001676 [m]

c = 0.00318 [m]

th_f = 0.000152 [m]

th_s = 0

b = 0.0105 [m]

b_f = 0.0105 [m]

D_h = 0.002647 [m]

theta = 0.9053 [-]

beta = 1368 [m^2/m^3]

A_fin\A = 0.873}

 

Related procedures include:

Nondimensional Functions

Coefficient of Heat Transfer

Pressure Drop

 

 

Compact Heat Exchangers